SemesterReal Analysis ITime: 3hrsTotal Marks: 50Section I: Answer all and each question is worth 2 MarksTotal Marks 6

- 1. Let (a_n) be a Cauchy sequence of real numbers. Suppose there is a subsequence (a_{k_n}) such that $a_{k_n} \to a$. Prove that $a_n \to a$.
- 2. Determine all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \in \mathbb{Z}$ for all $x \in \mathbb{R}$
- 3. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function satisfying $|f(x) f(y)| \le |x y|^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.

Section II: Answer any 4 and each question is worth 6 Marks Total Marks 24

- 1. Prove that Cauchy sequences are convergent.
- 2. Let (a_n) be a sequence of real numbers. Let $b_n = |a_n| + a_n$ and $c_n = |a_n| a_n$ for all $n \ge 1$. Prove that $\sum a_n$ converges absolutely if and only if $\sum a_n$ and $\sum b_n$ converge.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a function with IVP and $x \in \mathbb{R}$. Suppose $\lim f(x_n) = f(x)$ for any sequence $x_n \to x$ with $(f(x_n))$ is a constant sequence. Prove that f is continuous at x.
- 4. Prove that a continuous function on [a, b] is uniformly continuous.
- 5. Let $f:(0,1) \to \mathbb{R}$ be a differentiable function having a local maximum at $a \in (0,1)$. Prove that f'(a) = 0.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such f(x+y) = f(x) + f(y) for any $x, y \in [0, 1]$. Prove that there exists $a \in \mathbb{R}$ such that f(x) = ax for all $x \in [0, 1]$.

Section III: Answer any 2 and each question is worth 10 Marks Total Marks 20

1. Let (a_n) be a sequence of real numbers.

(a) If c is a limit point of (a_n) , prove that there exists a subsequence (a_{k_n}) such that $a_{k_n} \to c$ and $\liminf a_n \leq c \leq \limsup a_n$.

(b) Prove that $a_n \to \infty$ if and only if $\liminf a_n = \infty$

2. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function with IVP. Can f have simple discontinuties? Justify your answer.

(b) Let $f:(a,b) \to \mathbb{R}$ be a strictly increasing continuous function. Prove that there are extended real numbers A and B and a continuous function $\phi:(A,B) \to (a,b)$ such that $\phi(f(x)) = x$ for all $x \in (a,b)$.

3. (a) Let $f:[a,b] \to \mathbb{R}$ be a differentiable function and A > 0 such that f(a) = 0and $|f'(x)| \le A|f(x)|$ for all $x \in [a,b]$. Prove that f = 0 on [a,b].

(b) Prove Taylor's theorem: Let $f:[0,1] \to \mathbb{R}$ be a function such that f' exists and continuous on [0,1] and f'' exists on (0,1). Prove that there is a $t \in (0,1)$ such that $f(1) = f(0) + f'(0) + \frac{f''(t)}{2}$.